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Abstract

This paper describes a method to approximate point sets by Loop subdivision surfaces based on geometric al-
gorithms. We assume that the data points are given in triangular mesh of arbitrary topological type. The initial
control mesh of the Loop subdivision surface is obtained by simplifying the input triangular mesh using QEM
algorithm. Our algorithm iteratively updates the control mesh in a global manner based on a simple point-surface
distance computation followed by translations of the control vertices along the displacement vectors. The main
advantages of our approach compared to existing surface fitting methods are simplicity, speed, and generality.
Computational results show that our algorithm runs at least six times faster than current state-of-the-art subdivi-
sion fitting methods. We demonstrate our technique with a variety of complex examples.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object ModelingCurve, surface, solid, and object representations

1. Introduction

Fitting surfaces to 3D cloud points generated by laser
range scanning systems is one of the most important prob-
lems in CAD, geometric modeling and computer graphics
[HJ99, CWQ∗07]. We distinguish two types of fitting: in-
terpolation and approximation [HL93, PT97]. In interpola-
tion we generate an interpolating surface that passes through
the data points. In approximation we generate an approxi-
mating surface that passes near the data points which min-
imizes the deviation of the surface from the data points.
Consequently the number of control vertices and the num-
ber of data points is the same for interpolation, while the
number of control vertices is in general much less than the
number of data points for approximation. The most popular
representation for fitting such data in geometric modeling
is the tensor product B-spline surfaces. There is a tremen-
dous amount of literature on fitting B-spline curves/surfaces
to a set of data points, however it is not the scope of the
present paper to review all the existing work. Good surveys
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of shape-preserving fitting techniques with B-spline surfaces
are given in [HL93,PT97,HJ99,WARV02].

However, it is extremely difficult for tensor product sur-
faces to handle surfaces with arbitrary topology, and to
maintain continuity conditions near the extraordinary points
where the number of edges that meet at this point is not equal
to four. A new class of surfaces called subdivision surfaces,
which offers an alternative to the tensor product B-spline,
has become very popular in movie production and game en-
gines [DKT98].

In this paper we use the Loop subdivision surface [Loo87]
to approximate the data points given in triangular mesh of
arbitrary topological type, although the proposed algorithm
can be easily extended to Catmull-Clark subdivision surfaces
as well as Doo-Sabin subdivision surfaces. Our algorithm
has the following features:

• Simplicity: Our algorithm iteratively updates the input
mesh in a global manner based on a simple point-surface
distance computation followed by translations of control
vertices along the displacement vectors.

• Speed:Our algorithm runs at least six times faster than
current state-of-the-art subdivision fitting methods.

• Scalability: Our algorithm quickly gets a coarse fit, while
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we can progressively obtain a finer fit by performing more
iterations.

• Generality: Since our algorithm is based on simple geo-
metric procedures, it can be easily extended to curves and
surfaces defined by control vertices.

2. Related work

Research on fitting subdivision surfaces to point clouds has
been conducted extensively [HKD93, HDD∗94, STKK99,
LLS01, MMT∗04, MK05, ZC06, MMN07, CWQ∗07]. A
method for generating fair Catmull-Clark surfaces is pro-
posed by [HKD93]. First, a set of given mesh vertices is
interpolated and then the surface is faired by minimizing
a quadratic norm that combines thin plate and membrane
energies. The method solves a linear system using sparse
LU decomposition. A least squares fitting algorithm to a
scattered data in terms of Loop subdivision surface is stud-
ied by [HDD∗94,MK05]. The parametrization is computed
by projecting each vertex point onto a piecewise linear ap-
proximation of the subdivision surface in [HDD∗94], while
the parametrization is evaluated on the true subdivision sur-
face [MK05] using the exact evaluation procedure [Sta98].
These methods [HDD∗94, MK05] also rely on nonlinear
minimization methods.

A fast Loop subdivision surface fitting method which in-
teractively defines an initial mesh, and refines it through
an iterative local approximation method, is presented by
[STKK99]. The method is useful when one needs to quickly
generate a surface that captures the overall shape of the
scanned geometry, however the method may not be suitable
for generating a surface that precisely interpolates the data
points, since only a subset of the dense mesh is used in the
fitting process.

An algorithm for fitting Catmaull-Clark subdivision sur-
faces to a given shape through a fast local adaptation proce-
dure based on quasi-interpolation is introduced by [LLS01].
The method employs an adaptive approximation algorithm
that approaches the target surface gradually by generating a
sequence of surfaces. Since quasi-interpolation does not re-
quire the solution of a linear system, it is simpler than the
commonly used interpolation and least squares methods, but
may result in larger errors in high curvature regions as indi-
cated by [MK05].

A squared distance minimization (SDM), which is intro-
duced by [PL03], is applied by [CWQ∗07] for fitting a Loop
subdivision surface to unorganized points. An initial sur-
face is iteratively deformed towards the target surface by
minimizing an objective function defined by local quadratic
approximants of the squared distance function to the tar-
get surface. They express the second order Taylor approx-
imant of the squared distance function in the principal frame
at the normal footpoint. The method is anactive contour
method[KWT88] in the sense that an initial shape defined

by a Loop subdivision surface is iteratively deformed to-
wards the model shape by changing the control vertices of
the initial shape. In each iteration a linear system is solved
for the unknown displacement vectors. Since SDM is based
on local optimization, its approximation results can be sen-
sitive to the initial surface, and requires more research on the
initial selection of the control vertices.

The algorithm developed by [ZC06] consists of a two-
phase subdivision process, a topological modification of the
control mesh and a subsequent modified Catmull-Clark sub-
division to construct a smooth surface that interpolates some
or all of the vertices of a mesh with arbitrary topology. The
computational complexity of their algorithm isO(n) where
n is the number of the vertices, however the paper does not
address the problem of global optimal fairness, and the re-
sulting shape may exhibit some unwanted undulations.

Our algorithm, which does not require the solution of
linear system, employs an iterative method introduced by
[LWD03] for interpolating a set of ordered points by B-
spline curves/surfaces, and [MMN07] for interpolating a tri-
angular or a quadrilateral mesh of arbitrary topological type.

The method by [LWD03] first establishes a one-to-one re-
lationship between the given data points and the knots, and
computes the displacement vectors between the given points
and their corresponding points on the B-spline curve/surface
at knots, and displace the corresponding control vertices by
the displacement vectors iteratively until the magnitude of
the difference vectors become zero. They prove the conver-
gence of the algorithm based on the eigenvalue analysis of
the matrix which relates the displacement vectors of thek-th
step and thek+1-th step.

Iterative geometric algorithm developed by [MMN07]
constructs a smooth surface that interpolates a triangular
or a quadrilateral mesh of arbitrary topological type. They
start their algorithm by assuming that the given triangu-
lar/quadrilateral mesh is a control net of a Loop/Catmull-
Clark subdivision surface. The control vertices are iteratively
updated globally by a closest point computation and an dis-
placing procedure without solving a linear system. If the
convergence is slow in some vertices, one can terminate the
global iterations and conduct local iterations for the vertices
with slow convergence to save the computational time.

In this paper we present a novel approximation method
that is based on the iterative geometric algorithm [MMN07].

3. Overview of the algorithm

As an input we are given a triangular meshM represented by
a tuple(K,P) whereK is a simplicial complex specifying the
topological type of the mesh, and P= {p1,p2, . . . ,pn} ∈ R3

is a set of vertex positions. Unlike interpolation, we usu-
ally do not know in advance how many control vertices are
needed to keep the deviation errors within the prescribed
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Figure 1: Illustration of main steps of our geometric algorithm. (a) Input mesh overlaid on the shaded image. (b) QEM-
simplified mesh and its corresponding limit Loop subdivision surface. (c) Computation of error vectors (green) and displacement
vectors magnified by the scale of 2(red). (d) Final approximated Loop subdivision surface with its control vertices.

tolerance. Accordingly the approximation algorithm usually
starts with an initial mesh, which has a much lower num-
ber of triangulations than the input mesh, and increases the
number of control vertices iteratively until it satisfies the
prescribed tolerance. We first simplify the given input trian-
gular meshM=M(O) using QEM [GH97], which maintains
high fidelity to the original model. We denote the QEM-
simplified mesh asMQ=M(1). The number of vertices of
MQ depends on the accuracy required and model complex-
ity. We use about 1∼5% of the number of vertices ofM for
MQ which generally leads to very good results, as suggested
by [MK05].

For each vertex pi ∈ M, we compute the closest point
on the approximating surface S using Stam’s exact evalu-
ation procedure [Sta98]. Following [MK05] the parameter
value of the closest point of pi ∈ M on S is denoted by
ti =< fi ,(vi ,wi) > where fi ∈ MQ indicates the patch to
which pi is mapped, and(1−vi −wi ,vi ,wi) are the barycen-
tric coordinates.

We iteratively improve the approximation by relocating
the positions of the control vertices, inserting control ver-
tices in regions where the deviations are large. Whenever the
control vertices are inserted, we apply connectivity regular-
ization followed by edge-flips to remove elongated triangles.
We indicatek-th iteration by attaching a superscript(k).

We define two errors:

1. Average errorEave:

Eave=
∑n

i=1 ∥ pi −S(t(k)i ) ∥2

n
(1)

2. Maximum errorEmax:

Emax= max
1≤i≤n

∥ pi −S(t(k)i ) ∥2 (2)

With M(1) as an initial control of the approximating Loop
subdivision surface, a sequence of solutionsM(2), M(3), . . . is
generated andM(k) gradually converges to a solution whose
maximum error and average error divided by the bounding

box diagonal of the input mesh are within the tolerancesεmax

andεave, respectively.

4. Displacements of control vertices

We assume that the QEM-simplified meshMQ is the ini-
tial control mesh of the Loop subdivision surface. We be-
gin the geometric algorithm by computing the closest point

on S(t(k)i ) for each data point p(k)i by applying Newton’s
method. At each Newton iteration step we linearize the Loop

subdivision surface at the solution(v,w)(k)i, j [MK05], where
subscriptj represents thej-th Newton iteration, and we or-
thogonally project pi onto the tangent plane, yielding a 2×2

linear system for the correction(∆v,∆w)(k)i, j :

(p− (S(t)+Sv(t)∆v+Sw(t)∆w) ·Sv(t) |(k)i, j = 0

(p− (S(t)+Sv(t)∆v+Sw(t)∆w) ·Sw(t) |(k)i, j = 0 .

The initial values for Newton’s iteration can be generated by

orthogonally projecting p(k)i onto the triangle whose vertices
are obtained by computing the limit points of the vertices of
the current meshM(k). Let us denote a 1-ring neighbors of

p(k)
i by v1, . . . ,vN where we drop subscripti,and superscript

(k) for the sake of simplicity. Then the limit position of p(k)
i

is given by

(p(k)
i )∞ = βNp(k)

i +(1−βN)
v1 + . . .vN

N
,

where

αN =
(

3
8

+
1
4

cos
2π
N

)2

+
3
8
, βN =

3
11−8αN

As the iteration proceeds, given data points become closer
to the approximating Loop subdivision surface, and the pa-
rameter values of the closest points will not change from
iteration to iteration. Therefore, in such cases we may termi-
nate the computation of finding the closest points to save the
computational time. However, in the final step we compute
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Figure 2: Approximation by geometric algorithm. (a) QEM-
simplified control mesh (blue) and its corresponding limit
surface evaluated by Stam’s algorithm. The green lines rep-
resent the lines connecting the given data points P and their
corresponding closest points on the limit surface. The red
lines with arrows show the displacement vectors. (b) The re-

lation between the weighted error vectorê(k)
i,J and the error

vector e(k)i,J .

the closest points for all the data points to guarantee that the
errors are within the prescribed tolerance.

After the first iteration, we can start Newton’s method
from the patch and the parameter value assigned in the
previous iteration. Implementation issues for the Newton’s
method are fully discussed in [MK05,MMN07].

Once the closest point is computed, the error vector can be

expressed as e(k)
i = p(k)

i −S(t(k)i ). In interpolation, we simply
displace the control vertices by the error vectors

p(k+1)
i = p(k)

i +e(k)
i ,

and hence we have one-to-one correspondence between the
data points and the control vertices of the interpolating Loop
subdivision surface [MMN07], whereas in approximation
we do not have such one-to-one correspondence. Therefore

it is not trivial how to distribute the error vector e(k)
i to the

most appropriate control points of the approximating Loop
subdivision surface.

Let us assume that there arem closest points of P on S(t)
which lie on the patches of the one-ring neighbor of p(k)

i . For

each closest point of P we compute the error vector e(k)
i,J (see

Figure2(a)), where the subscriptJ denotes the index for the
closest points, and weigh it according to the barycentric co-

ordinatesu(k)
i,J = 1.0−v(k)

i,J −w(k)
i,J as follows:

ê(k)
i,J = u(k)

j e(k)
i,J , J = 1, . . . ,m . (3)

Note thatu(k)
i,J =1 at(p(k)

i )∞, andu(k)
i,J =0 along the edge oppo-

site to p(k)i as illustrated in Figure2 (b). The amount of dis-

placement of the control vertices d(k)
i is obtained by adding

all the weighted error vectorŝe(k)
i, j and dividing by the sum

of the weightsu(k)
i,J , yielding:

d(k)
i =

∑J ê(k)
i,J

∑J u(k)
i,J

. (4)

Finally the control vertices for thek+1-th iteration will be-
come

p(k+1)
i = p(k)

i +d(k)
i . (5)

We repeat the above steps (3) ∼ (5) until Eq.(1) and Eq.(2)
divided by the bounding box diagonal of the input mesh be-
come smaller than the prescribed tolerancesεmax and εave

for all the input data points.

The proof of convergence for the non-uniform cubic
B-spline curve interpolation and non-uniform bi-cubic B-
spline surface interpolation is studied by [LWD03]. In their
interpolation scheme the displacement vector is computed
by taking the difference between the given data points and its
corresponding points at knots on the B-spline curve/surface.
It is also shown experimentally by [MMN07] that when
displacement vector is evaluated between the given data
point and the corresponding closest point on an interpolat-
ing Loop/Catmull-Clark surface, eventually the surface in-
terpolates given data points. While a complete analysis of
the convergence of the approximation scheme is beyond the
scope of this paper, the intuition behind the approximation
algorithm is not difficult to understand.

5. Topological adjustments

When the error norm does not become small enough in some
regions, we insert new control vertices by applying 1-to-4
split with crack-fixing 1-to-2 split [MK05] as shown in Fig-
ure3 (a). We call this one face split abasic case split. In a ba-
sic case, the central shaded triangle is split into four triangles
at the mid points of the edges (red points). To maintain the
mesh compatibility, 1-to-2 split is conducted on each neigh-
boring face. The central white triangle of Figure3 (b) shares
two of its edges with 1-to-4 split triangles (shaded). We call
this two face split a " special case split". In special cases
1-to-4 split is conducted instead of 1-to-2 split to maintain
the valid mesh connectivity. Since the vertices affected by
the adaptive insertion (black and red points) have a one-to-
one correspondence with the vertices that have been subdi-
vided once, we assign the corresponding subdivided vertices
to the black and red vertices to minimize the modification of
S(t) [MK05].

Since these edge split operations induce extraordinary
vertices, we need to improve the mesh quality by regular-
izing its connectivity. This can be done by minimizing the
following function [SG03,MK05]:

R(M) = ∑
v∈M

(dv)−dopt(v))2 ,

whered(v) is the valence of vertex v anddopt(v) is its op-
timal degree. The optimal value for boundary vertices is
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(a) (b)

Figure 3: Face-split operation of control vertices for (a) a
basic case split, (b) a special case split.
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Figure 4: Topological adjustments: (a) Edge-flip operations
are conducted if the regularity measure R(M) decreases. (b)
Edge-flip operations will also be conducted to maximize any
minimal angles.

dopt(v) = 4, and for the rest of the vertices it isdopt(v) = 6.
As illustrated in Figure4 (a), we evaluate the value ofR(M)
for before and after the edge flip and choose the one that has
lowerR(M). Another problem that often arises is the appear-
ance of elongated edges. The elongated edges often cause
unwanted undulations, thus we need to remove them. We
apply edge-flips if the minimal angle between all the angles
of the triangles adjacent to the edge is increased as shown in
Figure3 (b).

The overall algorithm for topological adjustments can be
summarized as follows:

1. Insertion of control vertices once in five iterations of the
main approximation loop to the regions where error norm
does not become small enough.

2. Connectivity regularization by edge flipping.
3. Angle improving edge-flips.
4. Necessity to re-compute the initial values of Newton’s

iteration for the data points whose closest points lie on
the patch that are affected by the topological adjustments.

6. Experimental results

We have implemented the above algorithm on a Pentium IV
3.0GHz PC with 2GB RAM. The effectiveness of our ap-
proximation algorithm can also be seen from the companion
video clips captured using our approximation algorithm.

Figure5 illustrates a plot of the average as well as max-
imum deviations of the approximation with respect to the
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Figure 5: The plot shows the convergence of our algorithm
applied to armadillo model.

number of iterations of the main approximation loop for the
armadillo model. The figure also shows the time spent for
each iteration. Both error measures are scaled by a bounding
box diagonal of the model. The average errorEave=0.01%
and the maximum errorEmax=0.05% are reached after 16
iterations, and 30 iterations, respectively. The spikes in the
graph which appear in every five iterations are due to the
time for the topological adjustments of the control vertices.

The models that we use for experiments are a Stanford
bunny, Igea, a buddha, and an armadillo which are shown
in Figures1, 6, 7, 8. Here we note that the number of ver-
tices used in Figure1 is much less than the one used in the
numerical experiments. We also note that the Igea, Buddha,
and armadillo models in Figures6, 7, 8 are all computed
with εavg = 0.01% andεmax = 0.05%, which are different
from the ones in Table1.

Figure6 shows the shaded image of the input mesh, input
mesh overlaid on the shade image, QEM-simplified mesh
and its corresponding limit surface, final mesh overlaid on
the final surface , and the final surface of the Igea model.
Figure7 shows the shaded image of the input mesh, the final
surface, and their close-up views of the buddha model. Fig-
ure8 shows the front and rear views of the armadillo model
of the shaded image of the input mesh as well as the final
mesh.

We compare our results with those of the approxima-
tion method developed by [MK05], as well as [CWQ∗07]
and tabulate them in Table1. We include times for read-
ing input files, QEM mesh simplification and initializing dy-
namic parameters as a pre-computation. First we compare
with [MK05]. The PC on which they ran the experiments
is a 2.8 GHz Pentium IV with 2 GB RAM. We start the
computation with the same number of initial control ver-
tices as in [MK05], and set the same termination tolerances
εrms andεmax. Here we note that [MK05] use the root mean
square errorsεrms instead ofεave. Although there are some
differences in the resulting number of vertices of the final
mesh, our method is at least six times faster than the meth-
ods of [MK05].
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Model Original n Initial n Final n Emax (%) Erms (%) Precomputation Total time

Our Results
Bunny 37K 612 7098 0.049 0.0108 4sec 22sec
Igea 134K 336 1572 0.238 0.0701 14sec 1min:8sec
Armadillo 173K 433 3267 0.248 0.0618 19sec 1min:49sec
Buddha 543K 4091 26838 0.049 0.0101 1min 7min:6sec

Results in [MK05]
Armadillo 173K 433 2820 0.248 0.0598 N/A 12min:26sec
Buddha 543K 4093 17995 0.049 N/A N/A 64min
Bunny 37K 612 8440 0.048 N/A N/A 5min
Igea 134K 336 1553 0.247 0.0575 N/A 8min:29

Results in [CWQ∗07]
Buddha 543K 4662 18715 0.43* 0.03* 83min:58sec 114min:6sec
Bunny 35K 919 996 0.82* 0.09* 6min:1sec 7min:18sec
Igea 134K 526 2385 0.36* 0.05* 4min:11sec 6min:43sec

Table 1: Comparisons with other methods. (* The errors are based on uniformly scaled data when the longest side of the
bounding box has the length equal to 1.0.)

(a) (b) (c) (d) (e)

Figure 6: Igea: (a) Shaded image of the input mesh (134K vertices). (b)Input mesh overlaid on the shade image. (c) QEM-
simplified mesh (1343 vertices) and its corresponding limit surface. (d) Final mesh overlaid on the final surface (12445 vertices).
(e) Final surface.

(a) (b)

(c) (e)

(d) (f)

Figure 7: Buddha:(a) Shaded image of the input mesh (543K vertices). (b) Final Loop subdivision surface (26838 vertices). (c)
and (d) are the close-up views of the shaded image of the input mesh. (e) and (f) are the close-up views of approximated surface.

submitted toPoster Proceedings of Pacific Graphics (2008)



Y. Nishiyama, M. Morioka & T.Maekawa / Subdivision Surface Approximation 7

(a) (b) (c) (d)

Figure 8: Armadillo: (a) and (b) are the shaded images of the input mesh (173K vertices). (c) and (d) are the final Loop
subdivision surfaces (26110 vertices).

Model Iteration Pre-computation Iterative geometric algorithm
QEM Initialize Newton’s Method Remesh Other

Bunny 21 7.72% 8.14% 62.29% 8.08% 13.77%
Igea 32 3.86% 9.37% 68.18% 7.22% 11.37%
Armadillo 27 4.00% 6.79% 75.19% 6.71% 7.31%
Buddha 32 3.68% 5.26% 48.53% 36.14% 6.39%

Table 2: Calculation time for each function.

The method of [CWQ∗07] consist of two main phases,
pre-computation and minimization. Chen et al. ran the ex-
periments on a PC with an Intel Xeon 2.8 GHz and a 2 GB
RAM. The models are scaled into a rectangular box with the
longest side equal to 1.0. For setting up the squared distance
error functions, they pre-compute the distance field, as well
as the tangential and curvature information of the target sur-
face. As indicated in Table1, the time for pre-computation is
much longer than the minimization time. Although there are
some differences in the termination tolerances, if we com-
pare the total time, our method is also at least six times faster
than [CWQ∗07] and, even if we compare only the minimiza-
tion part, our method is still much faster.

Finally we list in Table.2 a detailed breakdown of the
ratios of the computational time took for constructing the
models in Figure1, 6, 7, 8, which are all computed with
εave = 0.01% andεmax = 0.05%. The second column lists
the number of iterations, the third column indicates the ra-
tio of computational time for reading the input data and the
QEM simplification. The fourth column is the time ratio for
initializing the dynamic parameters, and the fifth column is
the percentage of time took in the Newton iterations. The
sixth column represents the time ratio for remeshing, and the
seventh column shows time ratio for the rest of the compu-
tation including updating the control points. We observe that
the time for computing the closest points using Newton’s
method takes two thirds of the entire computational time.

7. Conclusion and Future Work

We have developed an efficient algorithm for constructing
Loop subdivision surfaces that approximates the vertices of
a triangular mesh. The method is based on geometric algo-
rithms, which iteratively update the control vertices without
solving a linear system. Comparing with conventional fit-
ting methods, which rely on solving linear systems, our al-
gorithm is faster, easier to implement, and more general. Al-
though our algorithm does not employ explicit fairing tools
in the formulation, the resulting surfaces are visually pleas-
ing.

As a topic of future research, we plan to further investigate
the remeshing scheme, and explore other applications of the
geometric algorithms in geometric modeling and computer
graphics.
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